Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.383
Filtrar
1.
Pol Merkur Lekarski ; 52(2): 178-188, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38642353

RESUMO

OBJECTIVE: Aim: To evaluate the cytotoxic activity of newly synthesized a series of novel HDAC inhibitors comprising sulfonamide as zinc binding group and Isatin derivatives as cap group joined by mono amide linker as required to act as HDAC inhibitors. PATIENTS AND METHODS: Materials and Methods: The utilization of sulfonamide as zinc binding group joined by N-alkylation reaction with ethyl-bromo hexanoate as linker group that joined by amide reaction with Isatin derivatives as cap groups which known to possess antitumor activity in the designed of new histone deacetylase inhibitors and using the docking and MTT assay to evaluate the compounds. RESULTS: Results: Four compounds have been synthesized and characterized successfully by ART-FTIR, NMR and ESI-Ms. the compounds were synthesized and characterized by successfully by ART-FTIR, NMR and ESI- Ms. Assessed for their cytotoxic activity against human colon adenocarcinoma MCF-7 (IC50, I=105.15, II=60.00, III=54.11, IV=56.57, vorinostat=28.41) and hepatoblastoma HepG2 (IC50, I=63.91, II=135.18, III=118.85, IV=51.46, vorinostat=37.50). Most of them exhibited potent HDAC inhibitory activity and significant cytotoxicity. CONCLUSION: Conclusions: The synthesized compounds (I, II, III and IV) showed cytotoxicity toward MCF-7 and HepG2 cancer cell lines and their docking analysis provided a preliminary indication that they are viable [HDAC6] candidates.


Assuntos
Adenocarcinoma , Antineoplásicos , Neoplasias do Colo , Isatina , Humanos , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/química , Vorinostat/farmacologia , Isatina/farmacologia , Linhagem Celular Tumoral , Amidas/farmacologia , Desenho de Fármacos , Antineoplásicos/farmacologia , Sulfonamidas/farmacologia , Zinco/metabolismo , Zinco/farmacologia , Proliferação de Células , Estrutura Molecular
2.
Acc Chem Res ; 57(8): 1135-1148, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38530703

RESUMO

ConspectusThe zinc-dependent histone deacetylases (HDACs 1-11) belong to the arginase-deacetylase superfamily of proteins, members of which share a common α/ß fold and catalytic metal binding site. While several HDACs play a role in epigenetic regulation by catalyzing acetyllysine hydrolysis in histone proteins, the biological activities of HDACs extend far beyond histones. HDACs also deacetylate nonhistone proteins in the nucleus as well as the cytosol to regulate myriad cellular processes. The substrate pool is even more diverse in that certain HDACs can hydrolyze other covalent modifications. For example, HDAC6 is also a lysine decrotonylase, and HDAC11 is a lysine-fatty acid deacylase. Surprisingly, HDAC10 is not a lysine deacetylase but instead is a polyamine deacetylase. Thus, the HDACs are biologically and chemically versatile catalysts as they regulate the function of diverse protein and nonprotein substrates throughout the cell.Owing to their critical regulatory functions, HDACs serve as prominent targets for drug design. At present, four HDAC inhibitors are FDA-approved for cancer chemotherapy. However, these inhibitors are active against multiple HDAC isozymes, and a lack of selectivity is thought to contribute to undesirable side effects. Current medicinal chemistry campaigns focus on the development of isozyme-selective inhibitors, and many such studies largely focus on HDAC6 and HDAC10. HDAC6 is a target for therapeutic intervention due to its cellular role as a tubulin deacetylase and tau deacetylase, and selective inhibitors are being studied in cancer chemotherapy and the treatment of peripheral neuropathy. Crystal structures of enzyme-inhibitor complexes reveal how various features of inhibitor design, such as zinc-coordinating groups, bifurcated capping groups, and aromatic fluorination patterns, contribute to affinity and isozyme selectivity. The polyamine deacetylase HDAC10 is also an emerging target for cancer chemotherapy. Crystal structures of intact substrates trapped in the HDAC10 active site reveal the molecular basis of strikingly narrow substrate specificity for N8-acetylspermidine hydrolysis. Active site features responsible for substrate specificity have been successfully exploited in the design of potent and selective inhibitors.In this Account, I review the structural chemistry and inhibition of HDACs, highlighting recent X-ray crystallographic and functional studies of HDAC6 and HDAC10 in my laboratory. These studies have yielded fascinating snapshots of catalysis as well as novel chemical transformations involving bound inhibitors. The zinc-bound water molecule in the HDAC active site is the catalytic nucleophile in the deacetylation reaction, but this activated water molecule can also react with inhibitor C═O or C═N groups to yield unanticipated reaction products that bind exceptionally tightly. Versatile active site chemistry unleashes the full inhibitory potential of such compounds, and X-ray crystallography allows us to view this chemistry in action.


Assuntos
Lisina , Neoplasias , Humanos , Epigênese Genética , Isoenzimas/metabolismo , Histona Desacetilases/metabolismo , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/química , Inibidores de Histona Desacetilases/metabolismo , Poliaminas/química , Catálise , Histonas/metabolismo , Zinco/química , Água/metabolismo
3.
Bioorg Chem ; 146: 107284, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38493640

RESUMO

Based on the well-established pharmacophoric features required for histone deacetylase (HDAC) inhibition, a novel series of easy-to-synthesize benzimidazole-linked (thio)hydantoin derivatives was designed and synthesized as HDAC6 inhibitors. All target compounds potently inhibited HDAC6 at nanomolar levels with compounds 2c, 2d, 4b and 4c (IC50s = 51.84-74.36 nM) being more potent than SAHA reference drug (IC50 = 91.73 nM). Additionally, the most potent derivatives were further assessed for their in vitro cytotoxic activity against two human leukemia cells. Hydantoin derivative 4c was equipotent/superior to SAHA against MOLT-4/CCRF-CEM leukemia cells, respectively and demonstrated safety profile better than that of SAHA against non-cancerous human cells. 4c was also screened against different HDAC isoforms. 4c was superior to SAHA against HDAC1. Cell-based assessment of 4c revealed a significant cell cycle arrest and apoptosis induction. Moreover, western blotting analysis showed increased levels of acetylated histone H3, histone H4 and α-tubulin in CCRF-CEM cells. Furthermore, docking study exposed the ability of title compounds to chelate Zn2+ located within HDAC6 active site. As well, in-silico evaluation of physicochemical properties showed that target compounds are promising candidates in terms of pharmacokinetic aspects.


Assuntos
Antineoplásicos , Hidantoínas , Leucemia , Humanos , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/química , Relação Estrutura-Atividade , Hidantoínas/farmacologia , Proliferação de Células , Antineoplásicos/farmacologia , Antineoplásicos/química , Histona Desacetilases/metabolismo , Linhagem Celular Tumoral , Histonas/metabolismo , Leucemia/tratamento farmacológico , Zinco/metabolismo , Simulação de Acoplamento Molecular
4.
Future Med Chem ; 16(7): 601-622, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38436113

RESUMO

Aim: The purpose of this work is to create and synthesize a new class of chemicals: 3-cyano-2-substituted pyridine compounds with expected multitarget inhibition of histone deacetylase (HDAC) and tubulin. Materials & methods: The target compounds (3a-c, 4a-c and 5a-c) were synthesized utilizing 6-(4-methoxyphenyl)-2-oxo-4-(3,4,5-trimethoxyphenyl)-3-cyanopyridine, with various linkers and zinc-binding groups (ZBGs). Results: Most of the tested compounds showed promising growth inhibition, and hydroxamic acid-containing hybrids possessed higher HDAC inhibition than other ZBGs. Compound 4b possessed the highest potency; however, it showed the most tubulin polymerization inhibition. Docking studies displayed good binding into HDAC1 and six pockets and tubulin polymerization protein. Conclusion: Compound 4b could be considered a good antitumor candidate to go further into in vivo and clinical studies.


Assuntos
Antineoplásicos , Inibidores de Histona Desacetilases , Inibidores de Histona Desacetilases/química , Tubulina (Proteína)/metabolismo , Relação Estrutura-Atividade , Moduladores de Tubulina/farmacologia , Moduladores de Tubulina/química , Antineoplásicos/química , Histona Desacetilases/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais
5.
PLoS Negl Trop Dis ; 18(2): e0011992, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38416775

RESUMO

Schistosomiasis is a major neglected parasitic disease that affects more than 240 million people worldwide caused by Platyhelminthes of the genus Schistosoma. The treatment of schistosomiasis relies on the long-term application of a single safe drug, praziquantel (PZQ). Unfortunately, PZQ is very effective on adult parasites and poorly on larval stage and immature juvenile worms; this can partially explain the re-infection in endemic areas where patients are likely to host parasites at different developmental stages concurrently. Moreover, the risk of development of drug resistance because of the widespread use of a single drug in a large population is nowadays a serious threat. Hence, research aimed at identifying novel drugs to be used alone or in combination with PZQ is needed. Schistosomes display morphologically distinct stages during their life cycle and epigenetic mechanisms are known to play important roles in parasite growth, survival, and development. Histone deacetylase (HDAC) enzymes, particularly HDAC8, are considered valuable for therapeutic intervention for the treatment of schistosomiasis. Herein, we report the phenotypic screening on both larvae and adult Schistosoma mansoni stages of structurally different HDAC inhibitors selected from the in-house Siena library. All molecules have previously shown inhibition profiles on human HDAC6 and/or HDAC8 enzymes. Among them we identified a quinolone-based HDAC inhibitor, NF2839, that impacts larval and adult parasites as well as egg viability and maturation in vitro. Importantly, this quinolone-based compound also increases histone and tubulin acetylation in S. mansoni parasites, thus representing a leading candidate for the development of new generation anti-Schistosoma chemotherapeutics.


Assuntos
Anti-Helmínticos , Inibidores de Histona Desacetilases , Quinolonas , Esquistossomose mansoni , Esquistossomose , Animais , Humanos , Anti-Helmínticos/farmacologia , Anti-Helmínticos/uso terapêutico , Desacetilase 6 de Histona/antagonistas & inibidores , Larva , Praziquantel/farmacologia , Praziquantel/uso terapêutico , Quinolonas/farmacologia , Proteínas Repressoras , Schistosoma mansoni , Esquistossomose/tratamento farmacológico , Esquistossomose mansoni/tratamento farmacológico , Esquistossomose mansoni/parasitologia , Inibidores de Histona Desacetilases/química , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico
6.
Exp Parasitol ; 258: 108716, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38340779

RESUMO

There are more than 240 million cases of malaria and 600,000 associated deaths each year, most due to infection with Plasmodium falciparum parasites. While malaria treatment options exist, new drugs with novel modes of action are needed to address malaria parasite drug resistance. Protein lysine deacetylases (termed HDACs) are important epigenetic regulatory enzymes and prospective therapeutic targets for malaria. Here we report the antiplasmodial activity of a panel of 17 hydroxamate zinc binding group HDAC inhibitors with alkoxyamide linkers and different cap groups. The two most potent compounds (4a and 4b) were found to inhibit asexual P. falciparum growth with 50% inhibition concentrations (IC50's) of 0.07 µM and 0.09 µM, respectively, and demonstrated >200-fold more selectivity for P. falciparum parasites versus human neonatal foreskin fibroblasts (NFF). In situ hyperacetylation studies demonstrated that 4a, 4b and analogs caused P. falciparum histone H4 hyperacetylation, suggesting HDAC inhibition, with structure activity relationships providing information relevant to the design of new Plasmodium-specific aliphatic chain hydroxamate HDAC inhibitors.


Assuntos
Antimaláricos , Malária Falciparum , Malária , Parasitos , Animais , Recém-Nascido , Humanos , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/química , Inibidores de Histona Desacetilases/uso terapêutico , Malária/tratamento farmacológico , Plasmodium falciparum , Ácidos Hidroxâmicos/farmacologia , Ácidos Hidroxâmicos/uso terapêutico , Antimaláricos/uso terapêutico
7.
Bioorg Chem ; 145: 107211, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38364550

RESUMO

Based on the crucial role of histone deacetylase (HDAC) and receptor tyrosine kinase in angiogenesis, in situ assembly, skeletal transition, molecular hybridization, and pharmacophore fusion were employed to yield seventy-six multi-target angiogenesis inhibitors. Biological evaluation indicated that most of the compounds exhibited potent proliferation inhibitory activity on MCF-7 cells, with the TH series having the highest inhibitory activity on MCF-7 cells. In addition, the IC50 values of TA11 and TH3 against HT-29 cellswere 0.078 µmol/L and 0.068 µmol/L, respectively. The cytotoxicity evaluation indicated that TC9, TA11, TM4, and TH3 displayed good safety against HEK293T cells. TH2 and TH3 could induce apoptosis of MCF-7 cells. Molecular modeling and ADMET prediction results indicated that most of target compounds showed promising medicinal properties, which was consistent with the experimental results. Our findings provided new lead compounds for the structural optimization of multi-target angiogenesis inhibitors.


Assuntos
Inibidores da Angiogênese , Antineoplásicos , Humanos , Relação Estrutura-Atividade , Linhagem Celular Tumoral , Inibidores da Angiogênese/farmacologia , 60489 , Células HEK293 , Inibidores de Histona Desacetilases/química , Ensaios de Seleção de Medicamentos Antitumorais , Desenho de Fármacos , Simulação de Acoplamento Molecular , Antineoplásicos/química , Proliferação de Células
8.
Chem Pharm Bull (Tokyo) ; 72(2): 173-178, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38296560

RESUMO

Histone deacetylase 8 (HDAC8) is a zinc-dependent HDAC that catalyzes the deacetylation of nonhistone proteins. It is involved in cancer development and HDAC8 inhibitors are promising candidates as anticancer agents. However, most reported HDAC8 inhibitors contain a hydroxamic acid moiety, which often causes mutagenicity. Therefore, we used machine learning for drug screening and attempted to identify non-hydroxamic acids as HDAC8 inhibitors. In this study, we established a prediction model based on the random forest (RF) algorithm for screening HDAC8 inhibitors because it exhibited the best predictive accuracy in the training dataset, including data generated by the synthetic minority over-sampling technique (SMOTE). Using the trained RF-SMOTE model, we screened the Osaka University library for compounds and selected 50 virtual hits. However, the 50 hits in the first screening did not show HDAC8-inhibitory activity. In the second screening, using the RF-SMOTE model, which was established by retraining the dataset including 50 inactive compounds, we identified non-hydroxamic acid 12 as an HDAC8 inhibitor with an IC50 of 842 nM. Interestingly, its IC50 values for HDAC1 and HDAC3-inhibitory activity were 38 and 12 µM, respectively, showing that compound 12 has high HDAC8 selectivity. Using machine learning, we expanded the chemical space for HDAC8 inhibitors and identified non-hydroxamic acid 12 as a novel HDAC8 selective inhibitor.


Assuntos
Antineoplásicos , Inibidores de Histona Desacetilases , Humanos , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/química , Avaliação Pré-Clínica de Medicamentos , Histona Desacetilases/metabolismo , Antineoplásicos/farmacologia , Ácidos Hidroxâmicos/farmacologia , Ácidos Hidroxâmicos/química , Aprendizado de Máquina , Proteínas Repressoras
9.
Life Sci ; 338: 122395, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38181853

RESUMO

Histone deacetylase 6 (HDAC6) contributes to cancer metastasis in several cancers, including triple-negative breast cancer (TNBC)-the most lethal form that lacks effective therapy. Although several efforts have been invested to develop selective HDAC6 inhibitors, none have been approved by the FDA. Toward this goal, existing computational studies used smaller compound libraries and shorter MD simulations. Here, we conducted a structure-based virtual screening of ZINC "Druglike" library containing 17,900,742 compounds using a Glide virtual screening protocol comprising various filters with increasing accuracy. The top 20 hits were subjected to molecular dynamics simulation, MM-GBSA binding energy calculations, and further ADMET prediction. Furthermore, enzyme inhibition assay and cell viability assay were performed on six available compounds from the identified hits. C4 (ZINC000077541942) with a good profile of predicted drug properties was found to inhibit HDAC6 (IC50: 4.7 ± 11.6 µM) with comparative affinity to that of the known HDAC6 selective inhibitor Tubacin (TA) in our experiments. C4 also demonstrated cytotoxic effects against triple-negative breast cancer (TNBC) cell line MDA-MB-231 with EC50 of 40.6 ± 12.7 µM comparable to that of TA (2-20 µM). Therefore, this compound, with pharmacophore features comprising a non-hydroxamic acid zinc-binding group, heteroaromatic linker, and cap group, is proposed as a novel HDAC6 inhibitor.


Assuntos
Simulação de Dinâmica Molecular , Neoplasias de Mama Triplo Negativas , Humanos , Sobrevivência Celular , Desacetilase 6 de Histona/antagonistas & inibidores , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/química , Simulação de Acoplamento Molecular , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Zinco
10.
Eur J Med Chem ; 265: 116129, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38211468

RESUMO

HDAC inhibitors, which can inhibit the activity of HDAC enzymes, have been extensively studied in tumor immunotherapy and have shown potential therapeutic effects in cancer immunotherapy. To date, numerous small molecule HDAC inhibitors have been identified, but many of them suffer from limited clinical efficacy and serious toxicity. Hence, HDAC inhibitor-based combination therapies, and other HDAC modulators (e.g. PROTAC degraders, dual-acting agents) have attracted great attention with significant advancements achieved in the past few years due to their superior efficacy compared to single-target HDAC inhibitors. In this review, we overviewed the recent progress on HDAC-based drug discovery with a focus on HDAC inhibitor-based drug combination therapy and other HDAC-targeting strategies (e.g. selective HDAC inhibitors, HDAC-based dual-target inhibitors, and PROTAC HDAC degraders) for cancer immunotherapy. In addition, we also summarized the reported co-crystal structures of HDAC inhibitors in complex with their target proteins and the binding interactions. Finally, the challenges and future directions for HDAC-based drug discovery in cancer immunotherapy are also discussed in detail.


Assuntos
Inibidores de Histona Desacetilases , Neoplasias , Humanos , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Inibidores de Histona Desacetilases/química , Quimioterapia Combinada , Neoplasias/tratamento farmacológico , Epigênese Genética , Imunoterapia
11.
Bioorg Chem ; 143: 107072, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38185013

RESUMO

Histone deacetylases (HDACs) are a class of enzymes that cleave acyl groups from lysine residues of histone and non-histone proteins. There are 18 human HDAC isoforms with different cellular targets and functions. Among them, HDAC6 was found to be overexpressed in different types of cancer. However, when used in monotherapy, HDAC6 inhibition by selective inhibitors fails to show pronounced anti-cancer effects. The HDAC6 enzyme also addresses non-histone proteins like α-tubulin and cortactin, making it important for cell migration and angiogenesis. Recently, the NLRP3 inflammasome was identified as an important regulator of inflammation and immune responses and, importantly, HDAC6 is critically involved the activation of the inflammasome. We herein report the design, synthesis and biological evaluation of a library of selective HDAC6 inhibitors. Starting from the previously published crystal structure of MAIP-032 in complex with CD2 of zHDAC6, we performed docking studies to evaluate additional possible interactions of the cap group with the L1-loop pocket. Based on the results we synthesized 13 novel HDAC6 inhibitors via the Groebke-Blackburn-Bienaymé three component reaction as the key step. Compounds 8k (HDAC1 IC50: 5.87 µM; HDAC6 IC50: 0.024 µM; selectivity factor (SF1/6): 245) and 8m (HDAC1 IC50: 3.07 µM; HDAC6 IC50: 0.026 µM; SF1/6: 118) emerged as the most potent and selective inhibitors of HDAC6 and outperformed the lead structure MAIP-032 (HDAC1 IC50: 2.20 µM; HDAC6 IC50: 0.058 µM; SF1/6: 38) both in terms of inhibitory potency and selectivity. Subsequent immunoblot analysis confirmed the high selectivity of 8k and 8m for HDAC6 in a cellular environment. While neither 8k and 8m nor the selectivity HDAC6 inhibitor tubastatin A showed antiproliferative effects in the U-87 MG glioblastoma cell line, compound 8m attenuated cell migration significantly in wound healing assays in U-87 MG cells. Moreover, in macrophages compounds 8k and 8m demonstrated significant inhibition of LPS-induced IL1B mRNA expression and TNF release. These findings suggest that our imidazo[1,2-a]pyridine-capped HDAC6 inhibitors may serve as promising candidates for the development of drugs to effectively treat NLRP3 inflammasome-driven inflammatory diseases.


Assuntos
Proteína 3 que Contém Domínio de Pirina da Família NLR , Neoplasias , Humanos , Desacetilase 6 de Histona , Inflamassomos , Inibidores de Histona Desacetilases/química , Anti-Inflamatórios/farmacologia , Neoplasias/tratamento farmacológico , Linhagem Celular Tumoral
12.
J Med Chem ; 67(3): 2095-2117, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38236416

RESUMO

Epoxyeicosatrienoic acids with anti-inflammatory effects are inactivated by soluble epoxide hydrolase (sEH). Both sEH and histone deacetylase 6 (HDAC6) inhibitors are being developed as neuropathic pain relieving agents. Based on the structural similarity, we designed a new group of compounds with inhibition of both HDAC6 and sEH and obtained compound M9. M9 exhibits selective inhibition of HDAC6 over class I HDACs in cells. M9 shows good microsomal stability, moderate plasma protein binding rate, and oral bioavailability. M9 exhibited a strong analgesic effect in vivo, and its analgesic tolerance was better than gabapentin. M9 improved the survival time of mice treated with lipopolysaccharide (LPS) and reversed the levels of inflammatory factors induced by LPS in mouse plasma. M9 represents the first sEH/HDAC6 dual inhibitors with in vivo antineuropathic pain and anti-inflammation.


Assuntos
Lipopolissacarídeos , Neuralgia , Animais , Camundongos , Analgésicos/farmacologia , Analgésicos/uso terapêutico , Epóxido Hidrolases/antagonistas & inibidores , Gabapentina , Desacetilase 6 de Histona/antagonistas & inibidores , Lipopolissacarídeos/farmacologia , Neuralgia/induzido quimicamente , Neuralgia/tratamento farmacológico , Inibidores de Histona Desacetilases/química , Inibidores de Histona Desacetilases/farmacologia
13.
ACS Chem Biol ; 19(2): 266-279, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38291964

RESUMO

Bromodomain and extra-terminal domain (BET) proteins and histone deacetylases (HDACs) are prime targets in cancer therapy. Recent research has particularly focused on the development of dual BET/HDAC inhibitors for hard-to-treat tumors, such as pancreatic cancer. Here, we developed a new series of potent dual BET/HDAC inhibitors by choosing starting scaffolds that enabled us to optimally merge the two functionalities into a single compound. Systematic structure-guided modification of both warheads then led to optimized binders that were superior in potency to both parent compounds, with the best molecules of this series binding to both BRD4 bromodomains as well as HDAC1/2 with EC50 values in the 100 nM range in cellular NanoBRET target engagement assays. For one of our lead molecules, we could also show the selective inhibition of HDAC1/2 over all other zinc-dependent HDACs. Importantly, this on-target activity translated into promising efficacy in pancreatic cancer and NUT midline carcinoma cells. Our lead molecules effectively blocked histone H3 deacetylation in pancreatic cancer cells and upregulated the tumor suppressor HEXIM1 and proapoptotic p57, both markers of BET inhibition. In addition, they have the potential to downregulate the oncogenic drivers of NUT midline carcinoma, as demonstrated for MYC and TP63 mRNA levels. Overall, this study expands the portfolio of available dual BET/class I HDAC inhibitors for future translational studies in different cancer models.


Assuntos
Antineoplásicos , Carcinoma , Neoplasias Pancreáticas , Humanos , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/química , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Farmacóforo , Neoplasias Pancreáticas/tratamento farmacológico , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Antineoplásicos/química , Proteínas de Ligação a RNA , Proteínas que Contêm Bromodomínio , Proteínas de Ciclo Celular/metabolismo
14.
Int J Mol Sci ; 25(2)2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38279359

RESUMO

HDAC11 is a class IV histone deacylase with no crystal structure reported so far. The catalytic domain of HDAC11 shares low sequence identity with other HDAC isoforms, which makes conventional homology modeling less reliable. AlphaFold is a machine learning approach that can predict the 3D structure of proteins with high accuracy even in absence of similar structures. However, the fact that AlphaFold models are predicted in the absence of small molecules and ions/cofactors complicates their utilization for drug design. Previously, we optimized an HDAC11 AlphaFold model by adding the catalytic zinc ion and minimization in the presence of reported HDAC11 inhibitors. In the current study, we implement a comparative structure-based virtual screening approach utilizing the previously optimized HDAC11 AlphaFold model to identify novel and selective HDAC11 inhibitors. The stepwise virtual screening approach was successful in identifying a hit that was subsequently tested using an in vitro enzymatic assay. The hit compound showed an IC50 value of 3.5 µM for HDAC11 and could selectively inhibit HDAC11 over other HDAC subtypes at 10 µM concentration. In addition, we carried out molecular dynamics simulations to further confirm the binding hypothesis obtained by the docking study. These results reinforce the previously presented AlphaFold optimization approach and confirm the applicability of AlphaFold models in the search for novel inhibitors for drug discovery.


Assuntos
Modelos Químicos , Simulação de Dinâmica Molecular , Simulação de Acoplamento Molecular , Domínio Catalítico , Desenho de Fármacos , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/química
15.
Eur J Med Chem ; 266: 116127, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38224650

RESUMO

The occurrence of cancer is closely related to metabolism and epigenetics. Histone deacetylases (HDACs) play a crucial role in the regulation of gene expression as epigenetic regulators, while nicotinamide phosphoribosyltransferase (NAMPT) is significantly involved in maintaining cellular metabolism. In this study, we rationally designed a series of novel HDAC/NAMPT dual inhibitors based on the structural similarity between HDAC and NAMPT inhibitors. The representative compounds 39a and 39h exhibit significant selective inhibitory activity on HDAC1-3 with IC50 values of 0.71-25.1 nM, while displaying modest activity against NAMPT. Compound 39h did not exhibit inhibitory activity against 370 kinases, demonstrating its target specificity. These two compounds exhibit potent anti-proliferative activity in multiple leukemia cell lines with low nanomolar IC50s. It is worth noticing that the dual inhibitors 39a and 39h overcome the primary resistance of HDAC or NAMPT single target inhibitor in p53-null AML cell lines, with the induction of apoptosis-related cell death. NMN recovers the cell death induced by HDAC/NAMPT dual inhibitors, which indicates the lethal effects are caused by the inhibition of NAD biosynthesis pathway as well as HDAC. This research provides an effective strategy to overcome the limitations of HDAC inhibitors in treating p53-null leukemia.


Assuntos
Inibidores de Histona Desacetilases , Leucemia , Humanos , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/química , Proteína Supressora de Tumor p53 , Nicotinamida Fosforribosiltransferase/metabolismo , Linhagem Celular Tumoral , Leucemia/tratamento farmacológico , Leucemia/metabolismo
16.
J Biomol Struct Dyn ; 42(1): 362-383, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-36995068

RESUMO

Histone deacetylases (HDACs) are critical epigenetic drug targets that have gained significant attention in the scientific community for the treatment of cancer. The currently marketed HDAC inhibitors lack selectivity for the various HDAC isoenzymes. Here, we describe our protocol for the discovery of novel potential hydroxamic acid based HDAC3 inhibitors through pharmacophore modeling, virtual screening, docking, molecular dynamics (MD) simulation and toxicity studies. The ten pharmacophore hypotheses were established, and their reliability was validated by different ROC (receiving operator curve) analysis. Among them, the best model (Hypothesis 9 or RRRA) was employed for searching SCHEMBL, ZINC and MolPort database to screen out hit molecules as selective HDAC3 inhibitors, followed by different docking stages. MD simulation (50 ns) and MMGBSA study were performed to study the stability of ligand binding modes and with the help of trajectory analysis, to calculate the ligand-receptor complex RMSD (root-mean-square deviation), RMSF (root-mean-square fluctuation) and H-bond distance, etc. Finally, in-silico toxicity studies were performed on top screened molecules and compared with reference drug SAHA and established structure-activity relationship (SAR). The results indicated that compound 31, with high inhibitory potency and less toxicity (probability value 0.418), is suitable for further experimental analysis.Communicated by Ramaswamy H. Sarma.


Pharmacophore modeling and virtual screening were performed with hydroxamic acid derivatives as HDAC3 inhibitors.MD simulation was performed for 50 ns time duration for selected protein-ligand complexes.SAR and toxicity studies (using TOPKAT tool) were performed.The results of these studies might be valuable in the further design and development of more potent HDAC3 inhibitors.


Assuntos
Desenho de Fármacos , Ácidos Hidroxâmicos , Simulação de Acoplamento Molecular , Ligantes , Ácidos Hidroxâmicos/farmacologia , Reprodutibilidade dos Testes , Simulação de Dinâmica Molecular , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/química , Relação Quantitativa Estrutura-Atividade
17.
Eur J Med Chem ; 264: 116015, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38048697

RESUMO

Simultaneous inhibition of PI3K and HDAC has shown promise for treating various cancers, leading to discovery and development of their dual inhibitors as novel anticancer agents. Herein, we disclose a new series of PI3K/HDAC dual inhibitors bearing a benzamide moiety as the pharmacophore of HDAC inhibition. Based on systematic structure-activity relationship study, compounds 36 and 51 featuring an alkyl and benzoyl linker respectively were identified with favorable potencies against both PI3K and HDAC. In cellular assays, compounds 36 and 51 showed significantly enhanced antiproliferative activities against various cancer cell lines relative to single-target inhibitors. Furthermore, western blotting analysis shows compounds 36 and 51 suppressed AKT phosphorylation and increased H3 acetylation in MV4-11 cells, while flow cytometry analysis reveals both compounds dose-dependently induced cell cycle arrest and cell apoptosis. Supported by pharmacokinetic studies, compounds 36 and 51 were subjected to the in vivo evaluation in a MV4-11 xenograft model, demonstrating significant and dose-dependent anticancer efficacies. Overall, this work provides a promising approach for the treatment of AML by simultaneously inhibiting PI3K and HDAC with a dual inhibitor.


Assuntos
Antineoplásicos , Leucemia Mieloide Aguda , Humanos , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Inibidores de Histona Desacetilases/química , Linhagem Celular Tumoral , Fosfatidilinositol 3-Quinases/metabolismo , Proliferação de Células , Antineoplásicos/química , Relação Estrutura-Atividade , Leucemia Mieloide Aguda/tratamento farmacológico , Zinco/farmacologia , Apoptose
18.
Anticancer Agents Med Chem ; 24(1): 18-29, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37957868

RESUMO

Since coumarin and hydroxamic acid compounds are well-known in medicinal chemistry, a variety of their derivatives have been highlighted due to their potential uses for plentiful treatments. Different compounds of their derivatives acting through diverse activities, such as anti-tumor, anti-cancer, anti-inflammation, and histone deacetylase inhibition, have been comprehensively investigated by many researchers over the years. This present review provides the latest literature and knowledge on hydroxamic acids derived from coumarin. Overall, some recent advancements in biological activities of hybrid derivatives of hydroxamic acids containing coumarin moieties in medicinal chemistry are discussed.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/química , Ácidos Hidroxâmicos/farmacologia , Ácidos Hidroxâmicos/química , Neoplasias/tratamento farmacológico , Cumarínicos/farmacologia , Cumarínicos/química , Histona Desacetilases/metabolismo , Relação Estrutura-Atividade , Antineoplásicos/farmacologia , Antineoplásicos/química
19.
Biotechnol J ; 19(1): e2300232, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37975165

RESUMO

Chlamydomonas reinhardtii has been successfully engineered to produce compounds of interest following transgene integration and heterologous protein expression. The advantages of this model include the availability of validated tools for bioengineering, its photosynthetic ability, and its potential use as biofuel. Despite this, breakthroughs have been hindered by its ability to silence transgene expression through epigenetic changes. Histone deacetylases (HDAC) are main players in gene expression. We hypothesized that transgene silencing can be reverted with chemical treatments using HDAC inhibitors. To analyze this, we transformed C. reinhardtii, integrating into its genome the mVenus reporter gene under the HSP70-rbcs2 promoter. From 384 transformed clones, 88 (22.9%) displayed mVenus positive (mVenus+ ) cells upon flow-cytometry analysis. Five clones with different fluorescence intensities were selected. The number of integrated copies was measured by qPCR. Transgene expression levels were followed over the growth cycle and upon SAHA treatment, using a microplate reader, flow cytometry, RT-qPCR, and western blot analysis. First, we observed that expression varies with the cell cycle, reaching a maximum level just before the stationary phase in all clones. Second, we uncovered that supplementation with HDAC inhibitors of the hydroxamate family, such as vorinostat (suberoylanilide-hydroxamic-acid, SAHA) at the initiation of culture increases the frequency (% of mVenus+ cells) and the level of transgene expression per cell over the whole growth cycle, through histone deacetylase inhibition. Thus, we propose a new tool to successfully trigger the expression of heterologous proteins in the green algae C. reinhardtii, overcoming its main obstacle as an expression platform.


Assuntos
Chlamydomonas reinhardtii , Inibidores de Histona Desacetilases , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/química , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/metabolismo , Vorinostat , Ácidos Hidroxâmicos/farmacologia , Ácidos Hidroxâmicos/química , Histona Desacetilases/metabolismo , Transgenes/genética
20.
J Nat Med ; 78(1): 236-245, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37991632

RESUMO

Chrysin (5,7-dihydroxyflavone, 6) and galangin 3-methyl ether (5,7-dihydroxy-3-methoxy flavone, 7) were obtained from the leaves of Oroxylum indicum (L.) Kurz in 4% and 6% yields, respectively. Both compounds could act as pan-histone deacetylase (HDAC) inhibitors. Structural modification of these lead compounds provided thirty-eight derivatives which were further tested as HDAC inhibitors. Compounds 6b, 6c, and 6q were the most potent derivatives with the IC50 values of 97.29 ± 0.63 µM, 91.71 ± 0.27 µM, and 96.87 ± 0.45 µM, respectively. Molecular docking study indicated the selectivity of these three compounds toward HDAC8 and the test against HDAC8 showed IC50 values in the same micromolar range. All three compounds were further evaluated for the anti-proliferative activity against HeLa and A549 cell lines. Compound 6q exhibited the best activity against HeLa cell line with the IC50 value of 13.91 ± 0.34 µM. Moreover, 6q was able to increase the acetylation level of histone H3. These promising HDAC inhibitors deserve investigation as chemotherapeutic agents for treating cancer.


Assuntos
Antineoplásicos , Inibidores de Histona Desacetilases , Humanos , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/química , Células HeLa , Simulação de Acoplamento Molecular , Antineoplásicos/farmacologia , Histona Desacetilases/metabolismo , Histona Desacetilases/farmacologia , Flavonoides/farmacologia , Relação Estrutura-Atividade , Linhagem Celular Tumoral , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais , Proteínas Repressoras/metabolismo , Proteínas Repressoras/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...